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Abstract From its very inception, the study of software architecture has recognized archi-
tectural decay as a regularly occurring phenomenon in long-lived systems. Architectural
decay is caused by repeated, sometimes careless changes to a system during its lifespan.
Despite decay’s prevalence, there is a relative dearth of empirical data regarding the nature
of architectural changes that may lead to decay, and of developers’ understanding of those
changes. In this paper, we take a step toward addressing that scarcity by introducing an
architecture recovery framework, ARCADE, for conducting large-scale replicable empirical
studies of architectural change across different versions of a software system. ARCADE
includes two novel architectural change metrics, which are the key to enabling large-scale em-
pirical studies of architectural change. We utilize ARCADE to conduct an empirical study of
changes found in software architectures spanning several hundred versions of 23 open-source
systems. Our study reveals several new findings regarding the frequency of architectural
changes in software systems, the common points of departure in a system’s architecture
during the system’s maintenance and evolution, the difference between system-level and
component-level architectural change, and the suitability of a system’s implementation-level
structure as a proxy for its architecture.
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1 Introduction

Software maintenance tends to dominate the cost and effort across activities in a system’s
lifecycle. Changes to a software system require understanding and, in many cases, updating
its architecture. Over time, a system’s maintenance is increasingly affected by architectural
decay, which is caused by careless or unintended addition, removal, and modification of archi-
tectural design decisions (Taylor et al., 2009). Decay results in systems whose implemented
architectures differ significantly, sometimes fundamentally, from their designed architectures.

The observation that architectural decay occurs regularly in long-lived systems has been
part of software engineering folklore from the very beginnings of the study of software
architecture (Perry and Wolf, 1992). It is widely accepted that, during the lifetime of a
software system, the system’s architecture changes constantly, leading to instances of decay.
Consequently, to identify and track architectural decay across the evolution history of a soft-
ware system, architectural change must be reliably determined and understood. In particular,
engineers must be able to pinpoint important architectural changes at different levels of
abstraction and from multiple architectural views, which can, in turn, point to factors that
cause decay.

To study architectural change, the architecture at a given point in time during a system’s
evolution must be extracted. To that end, a number of software architecture recovery tech-
niques have been designed (Koschke, 2009; Ducasse and Pollet, 2009; Garcia et al., 2013a;
Van Deursen et al., 2004; Maqbool et al., 2007), with the shared objective of analyzing a
system’s implementation in order to extract its architecture as a structured arrangement of
clusters that are, in turn, composed of entities such as source files, classes, or methods. At
the same time, there is a relative scarcity of empirical data about the nature of architectural
change. One major reason behind this scarcity has been a limited understanding of the efficacy
of existing architecture recovery techniques: How do we know that we can draw reliable
conclusions about the architecture recovered from the code? Our recent work has studied this
question. To better understand the accuracy of the existing architecture-recovery techniques
and the conditions under which a given technique excels or falters, we performed an extensive
comparative analysis of state-of-the-art recovery techniques (Garcia et al., 2013a). To evaluate
their accuracy, we developed (Garcia et al., 2012) and applied (Garcia et al., 2013b) a process
for producing “ground-truth” software architectures, which were used to assess the output of
the automated recovery techniques.

With this improved understanding of the existing recovery techniques, we are well-
positioned to study architectural change. To that end, we have recently introduced our first
attempt at addressing the above problem (Le et al., 2015). In this work, we outlined a novel
approach, Architecture Recovery, Change, And Decay Evaluator (ARCADE). ARCADE is a
software workbench that employs (1) a suite of architecture-recovery techniques and (2) a
set of metrics for measuring different aspects of architectural change. ARCADE constructs
an expansive view showcasing the actual (as opposed to idealized) evolution of a software
system’s architecture. While analogous analyses have been attempted at the level of system
implementation (Lehman, 1980; Godfrey and Tu, 2000; Kim et al., 2005; Chatzigeorgiou and
Manakos, 2010; Eick et al., 2001; Murgia et al., 2009), ARCADE represents the first solution
of which we are aware that enables investigating such issues at the level of architecture. In
this paper, we expand the empirical study, detail ARCADE’s architecture and implementation,
and present two novel metrics we developed in order to enable the study.

We have employed ARCADE as part of an empirical study in which we analyzed several
hundred versions of 23 open-source software systems. Specifically, we applied three of
the ten architecture recovery techniques that ARCADE currently implements. Two of these
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techniques—Algorithm for Comprehension-Driven Clustering (ACDC) (Tzerpos and Holt,
2000) and Architecture Recovery using Concerns (ARC) (Garcia et al., 2011)—recover
conceptual views of a system’s architecture; the third—PKG—recovers a system’s package-
level organization which represents the implementation view of the architecture (Kruchten,
1995). ACDC and ARC were chosen because they demonstrated better accuracy and scalability
compared to other recovery techniques in our previous empirical evaluation (Garcia et al.,
2013a). PKG provides an objective (if partial from an architectural perspective) baseline for
assessing our results. Additionally, the three techniques approach recovery from different,
complementary angles: ACDC leverages a system’s module dependencies; ARC relies on
information retrieval to derive a more semantic view of a system’s architecture; and PKG
strictly reflects the system’s implementation organization.

ARCADE is designed to conduct large-scale replicable empirical studies. We have devel-
oped a support framework, ARCADE-Controller, that allows a software architect to define a
workflow for architecture recovery analysis and to distribute that analysis over a set of nodes
in the computing. ARCADE-Controller rapidly recovers the architectures of many versions
and revisions of a system using multiple cloud instances simultaneously. ARCADE-Controller
then transfers the recovered architectures to an analysis server, allowing an engineer to run
evolutionary analyses, such as architectural change analysis.

To measure architectural changes across the development history of a software system,
we introduce two new architecture similarity metrics: cvg and a2a. cvg is a metric that
computes the similarity between two architectures based on the constituent components of
each architecture. a2a is a system-level similarity metric calculated based on the cost of
transforming one architecture to another. In order to compute the minimum transforming cost
between an architecture of two different versions of the same software system, we introduce
a new architecture distance metric mto and present an algorithm to calculate it.

This paper significantly extends our previous empirical study of architectural change of
open-source systems (Le et al., 2015). The extensions include the following: the algorithm for
computing a2a, proofs of mathematical properties of a2a and cvg, a description of ARCADE-
Controller, and an expanded empirical study that comprises an additional set of 9 subject
systems on top of the 14 systems studied in (Le et al., 2015). The reader is now able to study
the introduced metrics, evaluate them for her needs, and extend and modify them if necessary.
Furthermore, the addition of large numbers of versions of the 9 new systems enabled us to
further confirm many of our previous conclusions, but also to properly qualify some of them.
An example, discussed in detail below, is a trend involving a system’s pre-releases versus its
patch versions: the additional data confirmed the overall relationship we had observed before,
but introduced several instances that serve as counter-examples to our previously reported
trend. We have qualified the corresponding conclusions.

The empirical study reported in this paper has resulted in the following findings regarding
architectural changes in software systems:
1. A semantics-based architectural view (yielded by ARC) highlights notably different

aspects of a system’s evolution than the corresponding structure-based views (yielded by
ACDC and PKG). We found several cases in which the semantics-based view revealed
important architectural changes that remained concealed in the two structure-based
views. At the same time, existing architecture recovery techniques have heavily relied
on structural information (Ducasse and Pollet, 2009; Garcia et al., 2013a; Koschke,
2005, 2009; Maqbool et al., 2007). This suggests that more research on semantics-based
recovery is needed in order to properly aid software system maintenance.

2. Architectural changes occur within software components during a system’s evolution,
even when the system’s overall architectural structure remains relatively stable. Intra-



4 Pooyan Behnamghader * et al.

component architectural changes are especially important to track in cases of relatively
small system evolution increments. Relying on the architecture’s structural stability in
those cases may conceal non-trivial issues that will become apparent much later, when
subsequent architectural changes make them more difficult to address.

3. While useful as an accurate representation of how a system’s code base is organized
(i.e., of the system’s “implementation architecture” view (Kruchten, 1995)), the package
structure is a limited indicator of the system’s underlying architecture. PKG yielded
especially misleading results when implementation changes that were confined to specific,
already existing packages actually had far-reaching architectural implications. Such
implications were more readily uncovered by ACDC and ARC, and were independently
confirmed by the authors through code and architecture inspections.

4. Finally, dramatic architectural change tends to occur, both, (1) between the end of one
major version and the start of the next one, and (2) across one or more minor versions
of a software system. In other words, minor versions may result in major architectural
changes. Furthermore, we discovered that, in some cases, significant architectural changes
happen between pre-releases of a minor version. In other words, major changes to a
system’s architecture occur very late in the run-up to a new release, when common sense
suggests that the architecture should be stable. This suggests that a system’s versioning
scheme is not strongly related to the extent of architectural change. In turn, this may be
an added factor complicating the maintenance of a system’s architecture and contributing
to architectural decay.

The remainder of the paper is organized as follows. Section 2 summarizes the two related
research threads that have been brought together to enable the work described in this paper.
Section 3 explains a2a and provides proofs of its properties. Section 4 introduces the cvg
metric, its properties, and its implications. Section 5 presents the details of the ARCADE
workbench. Section 6 describes the setup for our empirical study, Section 7 its key results, and
Section 8 the threats to its validity. A discussion of related work (Section 9) and conclusions
(Section 10) round out the paper.

This paper describes our work in its entirety. However, it would be possible for a reader
to understand the details of the empirical study even if she skipped Sections 3 and 4, which
detail the properties of the two metrics. Likewise, a reader may choose to skip Section 5,
which describes the architecture and implementation of our workbench used to obtain the
data in the study.

2 Foundation

Our work discussed in this paper was directly enabled by two research threads: (1) architecture
change metrics and (2) software architecture recovery. Before we discuss the details of a2a
and cvg in Sections 3 and 4, and the ARCADE workbench in Section 5, we will summarize this
foundational work. Some of the outcomes reported here were described in prior publications,
while others are novel; we will clearly delineate the two in the remainder of this section.

2.1 Architectural Change Metrics

We consider architectural change at two different levels: system-level and component-level.
At the system-level, architectural change refers to the addition, removal, and modification
of components; at the component-level, architectural change reflects the placement of a
system’s implementation-level entities inside the architectural components (i.e., clusters).
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Studying architectural change at these two levels of abstraction allows us to determine when a
system-level architectural view evolves significantly differently than a component-level view.
Identifying such discrepancies may reveal points in a software system’s evolution where
architectural maintenance issues occur, as well as the scope of those issues.

Due to the lack of metrics for quantifying architectural change, we created two new
similarity metrics for our study: a2a, a system-level metric, and cvg, a component-level
metric. In order to calculate a2a, we introduce a new architecture distance metric, mto. We
will also describe a metric, c2c (Garcia et al., 2013a), because it enables the computation of
cvg. Similarity metrics a2a and cvg have been recently used in a study of the impact of the
granularity of module dependencies on the quality of architecture recovery (Lutellier et al.,
2015).

Architecture-to-architecture (a2a) is a similarity metric we developed for assessing
system-level change. a2a was inspired by the widely used MoJo (Tzerpos and Holt, 1999)
and MoJoFM metrics (Wen and Tzerpos, 2004). Neither MoJo nor MoJoFM is intended or
designed for a study of architectural evolution of the type attempted here: MoJo is a heuristic
distance metric intended to determine the similarity between two different architectures
with the same set of implementation-level entities (Tzerpos and Holt, 1999); MoJoFM is an
effectiveness measure for software clustering algorithms based on MoJo intended to compare
a recovered architecture with a ground-truth architecture (Wen and Tzerpos, 2004). MoJoFM
proved to be ill-suited for our study because it assumes that the entity sets in the architectures
(depending on the recovery method used, entities may be classes, methods or other building
blocks of a system) undergoing comparison will be identical; this is unrealistic for systems
whose versions are known to have evolved, sometimes substantially. In order to address
this shortcoming, we introduce mto, a distance metric that measures distance between two
architectures with arbitrary entity sets, then normalize it to calculate a2a.

Minimum-transform-operation (mto) is the minimum number of operations needed to
transform one architecture to another:

mto(A1,A2) = remC(A1,A2)+addC(A1,A2)

+ remE(A1,A2)+addE(A1,A2)+movE(A1,A2)
(1)

The five operations used to transform architecture A1 into A2 comprise additions (addE),
removals (remE), and moves (movE) of implementation-level entities from one cluster (i.e.,
component) to another; as well as additions (addC) and removals (remC) of clusters them-
selves (Agnew et al., 1994; Medvidovic, 1996; Oreizy et al., 1998).

Note that each addition and removal of an implementation-level entity requires two opera-
tions: an entity is first added to the architecture and only then moved to the appropriate cluster;
conversely, an entity is first moved out of its current cluster and only then removed from
the architecture. This is supported by several foundational works on architectural adaptation
(e.g., Agnew et al. (1994); Medvidovic (1996); Oreizy et al. (1998)). The underlying intuition
is as follows. If we think of the recovered architecture as a set of constituent building blocks
(i.e., clusters and entities) and their configurations (i.e., arrangement of entities inside clus-
ters), then there is a difference between (a) simply changing the architectural configuration
and (b) also changing the constituent building blocks.

We normalize mto to calculate a2a, a similarity metric between two architectures with
different implementation-level entities:

a2a(A1,A2) = (1− mto(A1,A2)

mto(A /0,A1)+mto(A /0,A2)
)×100% (2)
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where mto(A /0,Ai) is the number of operations required to transform a “null” architecture
A /0 into Ai. In other words, the denominator mto(A /0,A1) +mto(A /0,A2) is the number of
operations needed to construct architectures A1 and A2 from a “null” architecture. This
approach is inspired by the foundational work on architectural adaptation cited above, and is
further discussed in Section 3.5.

Section 3 presents the algorithm calculating mto and consequently a2a.

Cluster coverage (cvg) is a new similarity metric we have developed to indicate the
extent to which two architectures’ clusters overlap. In other words, cvg allows engineers to
determine the extent to which certain components existed in an earlier version of a system or
were added in a later version:

cvg(A1,A2) =
|simC(A1,A2)|
|CA1 |

×100% (3)

where |CA1 | is the number of clusters in architecture A1.
simC(A1,A2) returns the subset of A1 clusters that have at least one “similar” cluster in

A2:
simC(A1,A2) = {ci | ci ∈ A1, ∃c j ∈ A2, c2c(ci,cj)> thcvg} (4)

where c2c (Garcia et al., 2013a) measures the degree of overlap between the implementation-
level entities contained within two clusters. More specifically, simC(A1,A2) returns A1’s
clusters for which the c2c value is above a threshold thcvg for one or more clusters from A2.
Section 4 explains cvg in detail.

2.2 Architecture Recovery Tool Suite

We recently conducted a comparative evaluation of software architecture recovery tech-
niques (Garcia et al., 2013a). The objective was to evaluate the existing techniques’ accuracy
and scalability on a set of systems for which we and other researchers had previously obtained
“ground-truth” architectures (Garcia et al., 2013b). To that end, we implemented a tool suite
offering a large set of architecture recovery choices to an engineer.

Our study showed that a number of the state-of-the-art recovery techniques suffer from
accuracy and/or scalability problems. At the same time, two techniques consistently outper-
formed the rest across the subject systems. We select these techniques for our analysis in
this paper. These two techniques—ACDC (Tzerpos and Holt, 2000) and ARC (Garcia et al.,
2011)—take different approaches to architecture recovery: ACDC leverages a system’s struc-
tural characteristics to cluster implementation-level modules into architectural components,
while ARC focuses on the concerns implemented by a system. The former is obtained via
static dependency analysis, while the latter leverages information retrieval and machine learn-
ing. ACDC (Tzerpos and Holt, 2000) groups enty ities into clusters based on patterns, most
of which involve the dependencies among the entities. For example, ACDC’s main pattern
attempts to group entities so that only a single dependency exists between any two clusters.
ARC (Garcia et al., 2011) groups entities that handle similar system concerns into a single
cluster. For instance, ARC may group together the entities that handle user interface behaviors.
In the study described in this paper, we complement these two clustering-based architectural
views with PKG, a tool we implemented to extract a system’s package structure. Package
structure is considered a reliable view of a system’s “implementation architecture” (Kruchten,
1995); while not indicative of the actual architecture underlying the system (Taylor et al.,
2009), the package structure provides a useful baseline (a “sanity check”) for our study.
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3 Architecture-to-Architecture (a2a)

This section describes the a2a metric and its properties. A reader may choose to skip the
section if she is not interested in the details contained therein. While the empirical study
described in the remainder of the paper was enabled by a2a in a critical way, understanding
the obtained data and its interpretation does not require understanding the details of the metric
itself.

In order to demonstrate that a2a(A,B) is guaranteed to give a value between 0% and 100%,
in this section we explain that (1) our algorithm for calculating mto(A,B) is optimal; and
(2) mto satisfies metric axioms (Shirali and Vasudeva, 2005) guaranteeing that mto(A /0,A)+
mto(A /0,B) ≥ mto(A,B). We also explain that the denominator mto(A /0,A)+mto(A /0,B) is
not over-weighted, meaning that a2a returns a full range of values between 0% and 100% for
every architecture. We first introduce a case study in order to illustrate different facets of a2a.

3.1 Case Study

Assume V1 and V2 are two versions of an evolving software system S. Version V1 contains
n1 implementation-level entities and A is a recovered architecture of V1 with m clusters,
A={a1,a2, ...,am}. Version V2 contains n2 entities and B is an architecture of V2 with l
clusters, B={b1,b2, ...,bl}. An example is shown in Figure 1 to explain the calculation of
a2a(A,B). In this example, A is a recovered architecture of V1 with 14 entities, and B is
a recovered architecture of V2 with 15 entities. During the evolution of S from V1 to V2,
10 entities remain in the system, 4 entities are removed, and 5 new entities are introduced
(added).

Fig. 1: Architecture A contains 4 clusters and 14 entities. Architecture B contains 5 clusters
and 15 entities. To transform A to B, 4 entities (squares) are removed, 5 new entities

(diamonds) are introduced, and 10 entities (circles) remain in the system.
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3.2 Calculating mto(A /0,A) and mto(A /0,B)

mto(A /0,A) is the minimum number of operations required to construct architecture A from a
“null” architecture A /0:

mto(A /0,A) = addC(A /0,A)+addE(A /0,A)

In order to calculate mto(A /0,A), our algorithm adds all m clusters of A to A /0, addC(A /0,A) = m.
Afterwards, it first adds all n1 entities of A to a “dummy” cluster and then moves each of
them to the appropriate cluster, addE(A /0,A) = 2×n1. Therefore, the minimum value for
mto(A /0,A) is:

mto(A /0,A) = m+2×n1 = |CA|+2×|EA|

where |EA| is the number of entities, and |CA| is the number of clusters in architecture A.
Similarly, our algorithm constructs B from A /0 then mto(A /0,B) = l+2×n2 = |CB|+2×|EB|.
Figure 2 illustrates the aforementioned steps in constructing architecture A from A /0 in our
example. In this case, mto(A /0,A) = 4+2×14 = 32 and mto(A /0,B) = 5+2×15 = 35.

Fig. 2: Constructing architecture A from a “null” architecture: adding (1) clusters and (2)
entities, then (3) moving entites into the corresponing clusters.

3.3 Calculating mto(A,B)

mto(A,B) is the minimum number of operations required to transform architecture A into
architecture B:

mto(A,B) = remE(A,B)+ remC(A,B)+addC(A,B)+movE(A,B)+addE(A,B)

where remE, remC, addC, movE, and addE are five operations required to transform one
architecture to another. remE(A,B) is the number of operations required to prune architecture
A from entities that do not exist in B. remC(A,B)+addC(A,B) is the number of operations
required to equalize the number of clusters in A with clusters of B. There might be some
entities existing in both A and B, especially when A and B are the architectures of different
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versions of the same software system. movE(A,B) is the minimum number of operations
required to move those common entities in transforming A to B. Finally, addE(A,B) is the
number of operations needed to add entities missing in A but that need to be present in B.

Our algorithm calculates the minimum value for remE(A,B), remC(A,B)+addC(A,B),
movE(A,B), and addE(A,B) in order to calculate mto(A,B). Each of these is discussed
below.

3.3.1 Ensuring Minimum Value for remE(A,B)

In order to transform architecture A into B, we need to remove all entities of A that do not
exist in B. Therefore, the minimum value for remE(A,B) is:

remE(A,B) = 2×|EA \EB| EA \EB := {e | e ∈ EA∧ e 6∈ EB}

remE(A,B) is obtained by computing the following two operations on each entity erem

in A that needs to be removed: (1) moving erem out of its current cluster to a “dummy”
cluster and (2) deleting erem from the architecture. If EA ⊂ EB—meaning that no entity is
removed from the system—then remE(A,B) = 0. The highest possible minimum value for
remE(A,B) = 2×|EA| when EA∩EB = /0. In our example, the mto algorithm removes four
entities from A that do not exist in B, so that remE(A,B) = 2×|EA \EB|= 2×4 = 8. Figure
3 illustrates the process of removing entities.

Fig. 3: The mto algorithm first moves four entities to be removed from architecture A to a
“dummy” cluster, then removes that cluster and the four entities.

3.3.2 Ensuring Minimum Value for (remC(A,B)+addC(A,B))

In the process of transforming architecture A into B, the number of clusters in the transformed
architecture should match the number of clusters in B. Therefore, the minimum number of
clusters that we need to add or delete for transforming A into B is as follows:

remC(A,B)+addC(A,B) = abs(m− l) = abs(|CA|− |CB|)

If m < l, our algorithm adds l−m clusters to A before performing any further entity-
related operation (addE and movE) in order to guarantee the same number of clusters in A and
B. On the other hand if m > l our algorithm removes m− l clusters from A after performing
all addE and movE operations. The number of clusters in our example is increased from four
clusters in A to five clusters in B. Therefore, remC(A,B)+addC(A,B) = abs(|CA|− |CB|) =
abs(4−5) = 1. Figure 4 shows that the new cluster a5 is added to architecture A.
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Fig. 4: To have the same number of clusters in A and B, the mto algorithm adds an empty
cluster a5 to A.

3.3.3 Ensuring Minimum Value for movE(A,B)

In order to ensure that the minimal number of move operations movE(A,B) is applied in
calculating mto, we have implemented an algorithm that finds the largest subset of elements
remaining in the same cluster when transforming A into B. Our algorithm constructs a
balanced, weighted bipartite graph G that comprises the clusters of A and B. Note that if
m < l, then our algorithm adds l−m empty clusters (am+1, ...,al) to A and finds exactly one
matching cluster ai ∈ A for every cluster b j ∈ B.

The weight of the edge between two clusters of G is the number of their common entities:

G = (U,V,E) U = CA∪{am+1, ...,al} V = CB

E = {(ai,bj, |ai∩bj|) | ai ∈ U,bj ∈ V}

The mto algorithm uses the Hungarian algorithm (Munkres, 1957) to find the maximum
weighted matching in G. The Hungarian algorithm is a combinatorial optimization algorithm
which solves the minimum (or maximum) weighted matching problem (i.e., the assignment
problem) in polynomial time.

The result of performing our algorithm on G is a set of tuples M:

M = {(ai,bj,Ei) | ai ∈ U,bj ∈ V,Ei = ai∩bj}

where ai and b j are matched clusters, and Ei is the set of matching entities of ai that do not
move when transforming A into B. In our example, the a2a algorithm constructs a weighted
bipartite graph for architectures A and B as follows:

G = (U,V,E) U = {a1,a2,a3,a4}∪{a5} V = {b1,b2,b3,b4,b5}

E = {(a1,b1,1),(a1,b2,1),(a1,b3,1),(a2,b2,1),(a3,b1,3),(a4,b3,1),(a4,b4,1),(a4,b5,1)}

Figure 5 shows a maximum weighted matching M for G as follows:

M = {(a1,b3,{ce3}),(a2,b2,{ce4}),(a3,b1,{ce5,ce6,ce7}),(a4,b4,{ce9})}

where cei stands for entity circlei.
After finding the matching clusters and entities, our algorithm moves the rest of the

entities to their new appropriate clusters. (ai ∩EB) \Ei is the set of entities that exist in
both ai and EB, and move from ai to another component in transforming A into B. For each
e ∈ (ai∩EB)\Ei there exists be ∈V and a new appropriate cluster ak ∈U where (1) e ∈ be

and (2) ak is the matching cluster of be. For example, for ce1 ∈ (a1∩EB)\{ce3}, a3 is the
new appropriate cluster since (1) ce1 ∈ b1 and (2) a3 is the matching cluster of b1. Our
algorithm moves e from ai to ak with exactly one operation.

Therefore, the minimum value for movE(A,B) is computed as follows:
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Fig. 5: A maximum weighted matching between clusters of architectures A and B. Bold lines
and entities ilustrate matching clusters and entities. No lines means no common entity.

(∗) : movE(A,B) =

∣∣∣∣∣ l⋃
i=1

(ai∩EB)\Ei

∣∣∣∣∣ (∗∗) : Ei ⊂ ai and ai∩a j = /0

(∗) ∧ (∗∗) ⇒ movE(A,B) =

∣∣∣∣∣(EA∩EB)\
l⋃

i=1

Ei

∣∣∣∣∣= |EA∩EB|−

∣∣∣∣∣ l⋃
i=1

Ei

∣∣∣∣∣
For simplicity of the formula, we call the set of all matching entities E f ix which is the set
of all entities in A that do not move in transforming A into B. Therefore, the formula of
movE(A,B) is as follows:

movE(A,B) = |EA∩EB|− |Efix|

In our example:

EA∩EB = {cei : 1≤ i≤ 10} and Efix = {ce3,ce4,ce5,ce6,ce7,ce9}

which means that 6 out of 10 circle entities stay in their original clusters, while the other 4
move to new appropriate clusters. Our algorithm moves every entity e ∈ (EA∩EB)\E f ix to
its new corresponding cluster with exactly one operation, movE(A,B) = 10−6 = 4. The new
architecture is architecture B minus the new entities. Figure 6 shows the new architecture
resulting from the move operations.

Fig. 6: Performing move operations on the entities of A after finding the appropriate clusters

This matching between clusters of the two architectures maximizes the number of
matched elements, and consequently minimizes movE(A,B). Let us assume that there exists
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another algorithm to transform A into B with fewer move operations than our algorithm;
in fact, it introduces a new set of elements E f ix′ that remain in their original clusters when
transforming A into B; and E f ix′ is larger than E f ix. This means that the new algorithm
introduces a new matching between clusters of A and B with more common entities than
our matching, which contradicts our assumption that E f ix is the entity matching set resulting
from the maximum weighted matching algorithm. We note that the Hungarian algorithm is
guaranteed to find the maximum weighted matching in graph G.

3.3.4 Ensuring Minimum Value for addE(A,B)

Finally, for each newly introduced entity enew in architecture B, the mto algorithm performs
two operations: (1) adding enew to a “dummy” cluster and (2) moving enew to the appropriate
cluster. Therefore, the minimum value for addE(A,B) is computed as follows:

addE(A,B) = 2×|EB \EA|

If EB ⊂ EA—meaning no entity is introduced to the system—then addE(A,B) = 0. The
highest possible minimum value for addE(A,B) = 2×|EB| when EA∩EB = /0.

In our example, the mto algorithm adds every entity e ∈ EB that does not exist in EA to
the architecture, addE(A,B) = 2×|EB \EA|= 10. The new architecture shown in Figure 7
is an isomorph of architecture B, i.e., each entity or each cluster in the new architecture has
one and only one equivalent in architecture B.

Fig. 7: Adding each new entity to a “dummy” cluster, then moving it to the appropriate cluster.
The new architecture is an isomorph of architecture B.

3.3.5 Determining the Value of mto

Based on the minimum values calculated for remE(A,B), remC(A,B)+addC(A,B), movE(A,B),
and addE(A,B), mto(A,B) is derived as follows:

mto(A,B) = abs(|CA|− |CB|)+2×|EA \EB|+2×|EB \EA|+ |EA∩EB|− |Efix|
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In our example, the minimum cost for transforming architecture A into an isomorph of
architecture B in our example is:

mto(A,B) = 1+8+10+4 = 23

This means that 23 operations are required to transform A into B.
Algorithm 1 presents the pseudocode of mto.

Algorithm 1: mto(A,B)
Input :Two architectures A ={a1,a2, ...,am} and B ={b1,b2, ...,bl}
Output :An architecture resulted from transforming architecture A into B

1 m, l← |CA|, |CB|
//remE(A,B)

2 foreach e ∈ (EA \EB) do
3 move e to a “dummy” cluster
4 remove e from A

5 if m < l then
//addC(A,B)

6 add {am+1, ...,al} to A

//The algorithm movE(A,B) is presented in Algorithm 2.
7 movE(A,B)
//addE(A,B)

8 foreach e ∈ (EB \EA) do
9 add e to a “dummy” cluster in A

10 move e from the “dummy” cluster to the appropriate cluster in A

11 if m > l then
//remC(A,B)

12 remove m− l empty clusters from A

13 return A

Algorithm 2: movE(A,B)
Input :Two architecture A ={a1,a2, ...,al} and B ={b1,b2, ...,bl} with the same number of clusters
Output :An architecture resulted from moving entities in architecture A

1 U,V ←{a1,a2, ...,al},{b1,b2, ...,bl}
2 E←{ (ai,bj,

∣∣ai ∩bj
∣∣) : ai ∈ U, bj ∈ V }

3 G← (U,V,E)
//M (Maximum Weighted Matching) is the result of the Hungarian algorithm in the

form of { (ai,bj,Ei) : ai ∈ U, bj ∈ V, Ei = ai ∩bj }
4 M← HungarianAlgorithm(G,A,B)
5 foreach (ai,b j,Ei) ∈M do
6 foreach e ∈ (ai ∩EB)\Ei do

//ak is the matching cluster of be, and e belongs to be in B
7 ak ← where (ak,be,Ek) ∈M and e ∈ be
8 move e from ai to ak with one operation

9 return A
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3.4 Calculating a2a(A,B)

Once mto(A /0,A), mto(A /0,B), and mto(A,B) are calculated, a2a(A,B) is computed as follows:

a2a(A,B) = (1− mto(A,B)
mto(A /0,A)+mto(A /0,B)

)×100%

= (1−
abs(|CA|− |CB|)+2×|EA \EB|+2×|EB \EA|+ |EA∩EB|− |E f ix|

|CA|+2×|EA|+ |CA|+2×|EB|
)×100%

In our example, a2a(A,B) is as follows:

a2a(A,B) = (1− 23
32+35

)×100% = 65.7%

3.5 Properties of a2a and mto

The similarity metric a2a between architectures A and B is calculated by normalizing the
numerator mto(A,B) with the denominator mto(A /0,A)+mto(A /0,B). In order for it to be a
meaningful similarity metric for our study, we expect a2a to satisfy the following properties.
These properties are described in terms of the four axioms of metric space (Shirali and
Vasudeva, 2005): non-negativity, coincidence, symmetry, and triangle inequality.

1. a2a(A,B) must be guaranteed to return a value between 0% and 100%.

∀ A , B : 100%≥ a2a(A,B)≥ 0%

This means that the numerator mto(A,B) must be positive and the denominator mto(A /0,A)+
mto(A /0,B) must always be greater than or equal to mto(A,B). We prove that a2a satisfies
this property by showing that the non-negativity, symmetry and triangle inequality
properties hold for the distance metric mto.

2. For identical architectures, a2a must return 100% similarity. Also, if a2a returns 100%
similarity for two architectures, they must be identical.

∀ A , B : a2a(A,B) = 100% ⇔ A = B

From the formula, a2a(A,A) equals 100% if and only if mto(A,A) = 0. We prove that
a2a satisfies this property by showing that the coincidence property holds for mto.

3. For any architecture A, a2a must return 0% similarity between a “null” architecture A /0

and A. Also if a2a returns 0% similarity for two architectures, exactly one of them should
be A /0.

∀ A 6= A /0 , B : a2a(A,B) = 0% ⇔ B = A /0

We prove that a2a satisfies this property using the symmetry and triangle inequality
properties of mto.

4. Similarity metric a2a must be symmetric.

∀ A , B : a2a(A,B) = a2a(B,A)

We prove that a2a satisfies this property using the symmetry property of mto.

In the remainder of this subsection, we show that the four metric space axioms (Shirali
and Vasudeva, 2005) hold for mto and that a2a satisfies the desired properties.
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3.5.1 Metric Space Axioms for mto

One of the contributions of this paper is to define a meaningful distance metric between
architectures of different versions of a software system. Many statistical analysis and machine
learning algorithms critically rely on the distance metric given over their inputs (Xing et al.,
2002). Defining a good metric that reflects the importance of relationship between data highly
affects the performance of learning and data-mining algorithms, as well as the meaning of
their results. We describe some basic axioms for metric spaces and distances; and illustrate
that mto satisfies these axioms.

According to (Shirali and Vasudeva, 2005), a nonempty set X with a map m : X×X → R
is called a metric space if the map m satisfies following properties:

(P1) m(x,y)≥ 0 x, y ∈ X ; (non-negativity)
(P2) m(x,y) = 0 ⇔ x = y; (coincidence)
(P3) m(x,y) = m(y,x) x, y ∈ X ; (symmetry)
(P4) m(x,y)≤ m(x,z)+m(z,y) x, y, z ∈ X ; (triangle inequality)

The map m is called the distance function or metric on X . Introducing such a map m
(distance) on set X (metric space) means that distances between all members of X are defined.
We illustrate that set Arcs = {all possible architectures} is a metric space, and map mto is
the distance metric of Arcs:

mto(A,B) = remE(A,B)+ remC(A,B)+addC(A,B)+movE(A,B)+addE(A,B)

1. Non-negativity:

mto(A,B)≥ 0 A, B ∈ Arcs = {all possible architectures}

remE(A,B)≥ 0 ∧ addC(A,B)≥ 0 ∧ movE(A,B)≥ 0 ∧ addE(A,B)≥ 0
∧ remC(A,B)≥ 0 ⇒ mto(A,B)≥ 0 (sum o f non−negative numbers)

2. Coincidence:
mto(A,B) = 0 ⇔ A = B

(I) i f A = B ⇒ mto(A,B) = addC(A,A) + remC(A,A)
+ addE(A,A) + remC(A,A) + movE(A,A) = 0+0+0+0+0 = 0

(II) i f mto(A,B) = 0 ⇒ addC(A,B) = remC(A,B)
= addE(A,B) = remC(A,B) = movE(A,B) = 0 (all non−negative numbers)

⇒ No change in the system ⇒ A = B

3. Symmetry:
mto(A,B) = mto(B,A)

(I) remC(A,B)+addC(A,B) = abs(|CA|− |CB|)
= abs(|CB|− |CA|) = addC(B,A)+ remC(B,A)

(II) remE(A,B)+addE(A,B)= 2×|EA−EB|
+2×|EB−EA|= addE(B,A)+ remE(B,A)
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(III) movE(A,B) = movE(B,A) since the maximum weighted matching is calculated

on the same “undirected′′ graph f or movE(A,B) and movE(B,A)

Note that the empty clusters added to architecture Ai with smaller number of clusters
have no impact on the result of the matching algorithm since they contain no entity.

(I) ∧ (II) ∧ (III) ⇒ mto(A,B) = mto(B,A)

4. Triangle inequality:

mto(A,C) ≤ mto(A,B) + mto(B,C)

Suppose there exists an architecture B such that mto(A,B)+mto(B,C)< mto(A,C). This
means that there exist a new way to transform A into C (A→ B→ C) which costs
less operations than mto(A,C). This contradicts our assumption that mto(A,C) is the
minimum number of operations required to transform A into C, which we already proved.

Therefore, the set Arch = {all possible architectures} is a metric space with a distance
function (metric), mto.

3.5.2 Proof of desired properties for a2a

We proved that the properties non-negativity, coincidence, symmetry, and triangle inequality
hold for mto. Now, we illustrate that a2a satisfies our desired properties:

a2a(A,B) = (1− mto(A,B)
mto(A /0,A)+mto(A /0,B)

)×100%

1. ∀ A , B : 100%≥ a2a(A,B)≥ 0%

mto(A /0,A)+mto(A /0,B)=mto(A,A /0)+mto(A /0,B)≥mto(A,B)≥ 0

⇒ 1≥ mto(A,B)
mto(A /0,A)+mto(A /0,B)

≥ 0

⇒ 100%≥ (1− mto(A,B)
mto(A /0,A)+mto(A /0,B)

)×100%≥ 0%

Therefore, a2a is always guaranteed to return a value between 0% and 100%.
2. ∀ A , B : a2a(A,B) = 100% ⇔ A = B

(I) i f A = B ⇒ a2a(A,B)= a2a(A,A)

= (1− mto(A,A)
mto(A /0,A)+mto(A /0,A)

)×100%=(1− 0
2×mto(A /0,A)

)×100%= 100%

(II) i f a2a(A,B) = 100%

⇒ mto(A,B)
mto(A /0,A)+mto(A /0,B)

= 0 ⇒ mto(A,B)= 0 ⇒ A=B

Therefore, a2a returns 100% if and only if two architecture are identical.
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3. ∀ A 6= A /0 , B : a2a(A,B) = 0% ⇔ B = A /0

(I) i f B = A /0 ⇒ a2a(A,B)= a2a(A,A /0)

= (1− mto(A,A /0)

mto(A /0,A)+mto(A /0,A /0)
)×100%=(1−mto(A /0,A)

mto(A /0,A)
)×100%= 0%

(II) i f a2a(A,B) = 0% ⇒ mto(A,B)=mto(A /0,A)+mto(A /0,B)
= mto(A,A /0)+mto(A /0,B) (∗)

∀e∈EA∪EB cost o f operations on e =


0 if e ∈ E f ix

1 (move) if e ∈ (EA∩EB)\E f ix

2 (remove) e ∈ EA \EB

2 (add) e ∈ EB \EA

⇒ cost o f entity operations in mto(A,B) ≤ 2×|EA∪EB|
≤ 2×|EA|+2×|EB| (∗∗)

i f |CB|> 0 ⇒ abs(|CA|− |CB|)< |CA|+|CB| (∗∗∗)

(∗∗)∧(∗∗∗) ⇒ cost o f entity operations in mto(A,B)+abs(|CA|− |CB|)
≤ 2×|EA|+2×|EB|+|CA|+|CB|
⇒ mto(A,B)<mto(A,A /0)+mto(A /0,B) (∗∗∗∗)

(∗∗∗∗) contradicts with (∗) ⇒ |CB|= 0 ⇒ B=A /0

Therefore, a2a returns 0% if and only if one of the architectures equals to A /0.
4. ∀ A , B : a2a(A,B) = a2a(B,A)

a2a(A,B)= (1− mto(A,B)
mto(A /0,A)+mto(A /0,B))

)×100%

=(1− mto(B,A)
mto(A /0,B)+mto(A /0,A))

)×100%= a2a(B,A)

Therefore, a2a is symmetric.

It is important to note that the denominator of a2a is neither over- nor under-weighted,
meaning that for every architecture A, a2a returns the full range of values between 0% and
100%. This property is a consequence of the first, second, and third properties.

4 Cluster Coverage (cvg)

This section describes the cvg metric and its properties. A reader may choose to skip the
section if she is not interested in the details contained therein. While the empirical study
described in the remainder of the paper was enabled by cvg in a critical way, understanding
the obtained data and its interpretation does not require understanding the details of the metric
itself.

From the architectural perspective, a system may not change structurally at the same rate
at which its individual components change. This indicates that architectural maintenance
issues may occur at different points and may have different scopes. To measure component-
level change, we introduce a novel similarity metric, cvg, which measures the extent to which
components are added or removed as a software system evolves. In order to calculate cvg, we
use cluster-to-cluster (c2c), a metric we developed and applied in our recent work (Garcia
et al., 2013a) to assess component-level changes. In the remainder of this section, we recap
c2c, explain cvg, and provide an analysis of cvg’s properties.
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4.1 Similarity Between Two Clusters

c2c is a similarity metric that measures the degree of overlap between implementation-level
entities contained within two clusters:

c2c(ci,c j) =
|ci∩ c j|

max(|ci|, |c j|)
×100%

where ci∩ c j is the set of common entities between clusters ci and c j; and |ci| and |c j| are
the numbers of entities residing in clusters ci and c j respectively. The denominator is used to
normalize the entity overlap in the numerator by the number of entities in the larger of the
two clusters. This ensures that c2c provides the most conservative value of similarity between
two clusters.

In architectures A and B in our example, c2c(a1,b1) = 25% since the leftmost circle with
the label “1” is common between these two clusters and the size of the larger cluster (i.e., b1)
is 4. a1 has no common entity with cluster b4, hence c2c(a1,b4) = 0%. Figure 8 shows c2c
values between clusters of architecture A and architecture B.

Fig. 8: c2c values between clusters of architecture A and architecture B. If there is no line
between clusters ai and b j, then c2c(ai,b j) = 0%.

4.2 Calculating Cluster Coverage

cvg allows an engineer to determine the extent to which certain components of a system exist
in an earlier version or were added in a later version. cvg is calculated as follows:

cvg(A,B) =
|simC(A,B)|
|CA|

×100%

where the denominator |CA| is the number of clusters in architecture A.
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simC(A,B) returns the set of components of architecture A that have at least one matched
component in architecture B. Two components match if their similarity, computed using c2c,
is higher than a specified threshold thcvg.

simC(A,B) = {ci | ci ∈ A, ∃c j ∈ B, c2c(ci,cj)> thcvg}

The threshold thcvg determines the level of conservativeness of cvg. A higher thcvg results
in a more conservative comparison. In our example from Figure 8, if thcvg = 80%, then none
of the c2c values reach the threshold, which results in cvg(A,B) = 0% and cvg(B,A) = 0%.
On the other hand, a very low thcvg results in an unrealistically high cvg. In our example, if
thcvg = 20%, then every component in A finds a match in B and vice versa, which results
in cvg(A,B) = 100% and cvg(B,A) = 100%. With thcvg = 67%, only c2c(a3,b1) reaches
the threshold. As a result, cvg(A,B) = 25% and cvg(B,A) = 20%, which is more intuitive
than the cvg values obtained using the other thresholds we previously considered. We have
seen this pattern in a number of systems we have analyzed to date. For this reason, we
recommend setting thcvg = 67%, which we use for our empirical study later in this paper.
Setting thcvg = 67%, inspired by experiments performed in our prior work Garcia et al.
(2013a); Lutellier et al. (2015), ensures that the component remains largely unchanged, while
still allowing it to vary to a reasonable degree, when considering component equivalence
across versions.

As another example, consider a system whose version v2 was created after v1, and for
which cvg(A1,A2) = 70%, and cvg(A2,A1) = 40%. This means that 70% of the components
in version v1 still exist in version v2, while 100%−cvg(A2,A1) = 60% of the components in
version v2 have been newly added.

4.3 Properties of Cluster Coverage

cvg exhibits certain mathematical properties that are important for our study of architectural
change. These properties are related to the range of values the metric can take, the value
it takes for identical architectures, and the value it takes when a non-empty architecture is
compared with a “null” architecture. We expand on these properties below:

1. cvg(A,B) returns a value between 0% and 100%.

∀ A , B : 100%≥ cvg(A,B)≥ 0%

cvg has this property since simC(A,B) and CA are sets, and simC(A,B)⊂CA.
2. For any two identical architectures, cvg returns a similarity of 100%.

∀ A , B : A = B ⇒ cvg(A,B) = 100%

cvg has this property since

c2c(ci,ci) =
|ci∩ ci|

max(|ci|, |ci|)
×100% =

|ci|
|ci|
×100% = 100%

⇒ ∀ thcvg < 100%, A : simC(A,A)= {ci | ci ∈ A, ∃c j ∈ A, c2c(ci,cj)> thcvg}=CA

⇒ cvg(A,B) = cvg(A,A)=
|simC(A,A)|
|CA|

×100%=
|CA|
|CA|
×100%= 100%
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3. For any non-empty architecture A, cvg returns a 0% similarity between A and a “null”
architecture A /0.

∀ A : cvg(A,A /0) = 0%

This property always holds since:

cvg(A,A /0) =
|simC(A,A /0)|
|CA|

×100% =
| /0|
|CA|
×100% = 0%

For a given architecture A, cvg may returns values that span the complete range of values
between 0% and 100%. This property is a consequence of the first, second, and the third
properties. However, cvg is not symmetric, as explained by the example in Section 4.2. Also
note that if cvg(A,B) equals 100%, A and B are not necessarily identical. Furthermore, if
cvg(A,B) equals 0%, neither A nor B need be a “null” architecture.

5 ARCADE

This section describes the ARCADE workbench, its architecture, and its implementation.
A reader may choose to skip the section if she is not interested in the details contained
therein. While the empirical study described in the remainder of the paper was directly
enabled by ARCADE, understanding the obtained data and its interpretation does not require
understanding the details of the workbench itself.

To study architectural change and decay, ARCADE (1) performs architecture recovery
from a system’s implementation, uses the recovered information to compute (2) architectural
change metrics and (3) decay metrics, and (4) performs different statistical analyses of the
obtained data. As discussed previously, this paper presents our study of architectural change.
To that end, we will focus on the first two aspects of ARCADE.

ARCADE is designed with the requirement of conducting replicable, reusable, and
scalable studies. Therefore, we have developed a support framework named ARCADE-
Controller as part of ARCADE. ARCADE-Controller helps users to define the workflow of
an analysis and to employ the power of cloud computing for distributing the analysis on the
cloud. ARCADE’s overall architecture and implementation as well as ARCADE-Controller
will be discussed in the following sub-sections.

5.1 ARCADE’s Architecture and Implementation

ARCADE’s foundational element is architecture recovery, depicted as the Recovery Techniques
component in ARCADE’s dataflow architecture shown in Figure 9. The architectural views
produced by Recovery Techniques are directly used for studying architectural changes.
ARCADE currently provides access to ten recovery techniques; nine techniques use algorithms
for clustering implementation-level elements into architectural components Garcia et al.
(2013a), while one technique reports the implementation view of a system’s architecture
(i.e., the system’s directory and package structure). ARCADE thereby allows an engineer
(1) to extract multiple architectural views and (2) to ensure maximum accuracy of extracted
architectures by highlighting their different aspects.

For each architecture, ARCADE computes the change metrics discussed in Sections 2.1,
3, and 4. To that end, the Change Metrics Calculator component analyzes the architectural
information yielded by Recovery Techniques. The computed metrics comprise the final
artifact produced by ARCADE (Change Metrics Values in Figure 9) that is relevant to this
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Fig. 9: Architecture recovery and analysis components and artifacts leveraged in this study.

paper.1 This artifact is then used to interpret the degree of architectural change in the manner
discussed in Section 6. ARCADE employs our own implementations of the change metrics in
a manner that directly reflects the details described in Sections 3 and 4.

ARCADE computes the Change Metrics Values by comparing the architecture of a
software system version with the architectures of its ancestors or descendants. To conduct this
comparison, ARCADE needs to know the evolution path of the software system. The evolution
path is a sequence of version pairs. A version pair is an ordered pair (s, t) of versions from
a given system, where t is the target version that evolved directly from the source version
s. Each value for the three metrics from Section 2.1 is computed using a version pair. We
obtained the correct evolution paths for our subject systems by using git-log (Git, 2014) and
svn-graph-branches (Mengué, 2014). The two tools provide analogous functionality on the
two different types of repositories, Git and SVN. Both tools can parse repository log files
and create graphs that show relationships between software versions. For example, if version
1.1 of a system is created from version 1.0, then in the evolution graphs version 1.1 will be
linked from version 1.0.

The described features of ARCADE are implemented in Java and Python. ARCADE is
available for download from (ARCADE, 2015).

A critical part of ARCADE is the selection of appropriate architecture recovery techniques.
Since our previous evaluation (Garcia et al., 2013a) showed that two of the techniques—
ACDC and ARC—exhibit significantly better accuracy and scalability than the remaining
clustering-based techniques, and that they produce complementary architectural views (recall
Section 2.2), we focus on them in our study. ACDC’s view is based on several common,
familiar subsystem patterns found in large systems, such as directory structures and graphical
properties of source files (e.g. their out-degrees or subgraph domination) (Tzerpos and Holt,
2000). On the other hand, ARC’s view produces components that are semantically coherent
due to sharing similar system-level concerns (e.g., a component whose main concern is
handling of distributed jobs). We complement the architectures recovered by ACDC and ARC
with each system’s package-structure view extracted by PKG.

PKG is a straightforward recovery technique, since package information and directory
structure is directly available from a software system’s implementation. On the other hand,
ARC and ACDC perform more sophisticated analyses to extract an architectural view of a
system. Both of these techniques introduce challenges that must be addressed when studying
architectural change. In the following sub-sections, we explain ACDC and ARC in more

1 The current version of ARCADE (ARCADE, 2015) also analyzes and quantifies different symptoms of
architectural decay for a given system. However, these features are currently under evaluation and are outside
the scope of this paper.
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detail, the challenges arising from using them for studying architectural change, and the
solutions we developed to address those challenges.

5.1.1 ACDC

To recover architecture using ACDC, we obtained an implementation of the technique from
ACDC’s authors (Tzerpos and Holt, 2000) and used its default settings. Although ACDC relies
on a deterministic clustering algorithm, it turned out that its implementation is not determin-
istic. This initially introduced inaccuracies in our empirical analysis. Specifically, applying
the original implementation of ACDC on the same source code twice yields architectures that
are usually 95% similar according to the a2a metric.

We traced the source of ACDC’s non-determinism bug to the implementation of the
Orphan Adoption (OA) algorithm used in its implementation. OA is an incremental clustering
algorithm that ACDC employs to assign a system’s implementation entities to architectural
components. The order of entities provided as input affects the result of OA, and subsequently
the architecture recovered by ACDC. In the original implementation of ACDC, this order is
not the same in every execution of the algorithm, causing the non-deterministic output. We
resolved this problem by first sorting the input to OA based on the full package name of each
class file.

5.1.2 ARC

To represent system-level concerns, ARC leverages probabilistic topic modeling (Blei, 2012),
which are machine-learning algorithms for determining thematic topics in text documents.
For ARC, each topic obtained using such algorithms represents a system-level concern. In
order to represent the topic models needed for ARC, we have used MALLET, a machine
learning toolkit (McCallum, 2002). The topic-model extraction algorithms implemented by
MALLET are non-deterministic. This posed a problem when trying to meaningfully compare
two concern-based architectures as required for our study, since we needed a shared topic
model for their recovery. Therefore, for each subject system, we created a topic model by
using all available versions of the system as the input to MALLET. Another challenge arising
from using topic modeling is that there is no generally agreed-upon or objectively computable
number of topics for a given body of text (McCallum, 2002; Blei, 2012). For each system
in our study, the number of topics was determined based on our experience with ARC from
a previous empirical evaluation (Garcia et al., 2013a). We used the resulting multi-version
topic model for a system to recover the architectures for all of that system’s versions.

In addition, we also computed architectural changes between a large number of pairs
consisting of different versions of the same system each by using topic models created
from only the involved two versions. The architectural change results yielded by the two
approaches—a single topic model for all system versions vs. different topic models for each
pair of versions—are highly similar, with a variation of 1-2%. This supports our hypothesis
that topic models created from a large number of versions would not produce significant
noise when recovering the architecture of a particular version.

Our ultimate goal in employing topic modeling is to extract meaning from system code.
Natural language texts (e.g., newspaper articles and books) are intended for human readers
and use vocabularies with typically well-defined semantics. Text found in code, however, does
not necessarily use identifiers or comments that are human-readable. In fact, such code may
be intentionally obfuscated to prevent human readability (e.g., to protect intellectual property).
To obtain accurate topics from software, developers should use meaningful identifiers or
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write intelligible comments. To mitigate such issues, probabilistic topic models rely upon fre-
quencies of words in code sampled to fit a probability distribution known to be representative
of textual documents. Furthermore, it is reasonable to expect that ARCADE would be used
by an organization that owns the software system under maintenance, precluding the need to
resort to measures like obfuscation.

To reduce issues arising from noise that appears in text, we must select appropriate stop
words, which are words that have low semantics and reduce the quality of obtained topics, for
the domain of software. We selected stop words from the English language (e.g., articles like
“the”), general computing, programming languages (e.g., keywords in Java), and individual
systems (e.g., a system’s name). Finally, it is also possible in topic modeling that the resulting
topics are not easily understandable by a human unfamiliar with the software system in
question. Such topics may be confusing for new engineers still learning about the system;
however, those topics may still be meaningful for the original and/or more knowledgeable
engineers.

To construct a highly accurate topic model for each subject system, we identified fre-
quently used yet unimportant words (e.g., words about license agreements that appear in
many source files). Those words should be ignored when constructing topic models to pre-
vent excessive overlap between topics. To identify those words, we designed a refinement
process involving three PhD students. Each student individually identified words involving
license agreements, meaningless variable names, and subject-system names. From this set,
the participants agreed upon a set of common words that should be ignored. We then supplied
the resulting words to MALLET as stop words which, in turn, ignores those words during
topic-model construction.

5.2 Automation of the Analysis Workflow via ARCADE-Controller

For mining software repositories, the ability to replicate experiments is essential for eval-
uating different techniques and assessing their findings. In addition, the ability to scale an
empirical study, in terms of the number of systems and revisions involved, enhances the
generalizability of a study’s conclusions. Prior research has shown that many empirical
studies in mining software repositories suffer from scalability or replicability issues (Ghezzi
and Gall, 2013; Robles, 2010). To address these issues, we have designed and implemented
ARCADE-Controller, a support framework that plugs into ARCADE and helps engineers
define and execute complete workflows for architecture recovery and analysis over a set
of software systems and their revisions. As depicted in Figure 10, ARCADE-Controller
augments ARCADE’s data flow from Figure 9 in a relatively straightforward but critical way.

To conduct analyses on a large number of software versions, ARCADE-Controller dis-
tributes a user-defined workflow over multiple cloud instances. Each instance is responsible
for downloading the source code of multiple versions from online repositories, compiling the
source code, and recovering the architecture of each system version. ARCADE-Controller
gathers recovered architectures onto an analysis server for further evolutionary studies, such
as computing architectural change metrics between the recovered architectures. To enable
portability, ARCADE-Controller is developed in the bash scripting language, which makes it
runnable on Unix-based operating systems (e.g., Linux and Mac OS X).

ARCADE-Controller interacts with cloud infrastructures through their command-line
interfaces (e.g., Amazon CLI (Amazon, 2015)). The tool provides cloud management opera-
tions, such as launching instances, setting up required software, and terminating instances.
In addition, it deploys static and dynamic analyses on each cloud instance and downloads
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Fig. 10: Deployment of ARCADE components onto the cloud using ARCADE-Controller for
rapid, large-scale architecture recovery and analysis.

the results to an analysis server. In the study described in this paper, we used the Amazon
EC2 platform to run our analysis. The layered architecture of ARCADE-Controller makes
it possible to run analyses on other cloud infrastructures, such as Google Cloud Platform
(Google, 2015a).

ARCADE-Controller provides a number of scripts to help users define analysis steps over
subject systems. For example, users can set up a cloud instance to download source code from
popular repositories (e.g. Github (Git, 2015) and BitBucket (Bitbucket, 2015)). Users are also
able to select the version granularity they want (e.g., internal commits or official releases).
Currently, ARCADE-Controller supports compiling the source code of Ant (Apache, 2015a)
and Maven (Apache, 2015b) projects semi-automatically. We have defined many compilation
scenarios (e.g., using different Java versions) to minimize manual configuration.

ARCADE-Controller supports incorporating tools outside of ARCADE by providing
a standard wrapper that serves as an interface to ARCADE. ARCADE-Controller allows
workflows to be defined among these wrapped tools and ARCADE’s built-in analyses. This
design allows tools and analyses to be re-used in different scenarios. By defining a workflow
of architecture-recovery analysis using ARCADE-Controller, researchers can conduct large-
scale analyses that are replicable with little effort.

We have tested the applicability of this approach by integrating other static and dynamic
programming analysis tools, such as PMD (PMD, 2015), a static source code analyzer, and
FieryEye (Mahajan et al., 2016), a dynamic web-interface analyzer, into ARCADE. In the
case of FieryEye, we reduced the execution time of the analysis from a couple of days to
several hours by using hundreds of EC2 nodes. It is not mandatory to run ARCADE’s analyses
using cloud computing. All the tools in section 5.1 can be run on a local machine.

For this paper’s analyses, which involved tens of millions of source lines of code
(MSLOC), cloud computing significantly reduced the running time. Downloading and compil-
ing the source code of each version of a system, and subsequently recovering the architecture
of that version in our workflow, are parallelized on cloud servers.

6 Empirical Study Setup

Our study targets four research questions regarding architectural change. The absence of
empirical data on architectural change in real systems has resulted in that phenomenon
being relatively poorly understood. As a result, the extent of architectural change, types of
architectural change, and the points in a system’s lifecycle when major architectural change
occurs are generally unclear.

RQ1: To what extent do architectures change at the system level? This research
question focuses on the structural stability of a system’s architecture. During development
and evolution, a system’s implementation entities are usually reallocated (added, removed,
moved) among its architectural components. This question will shed light on when, how, and
to what extent this reallocation happens.
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RQ2: To what extent do architectures change at the component level? This re-
search question focuses on the structural stability of a system’s individual components.
Implementation-level entities that realize an architectural component will change over time
as the system evolves. Beyond a certain change threshold, it may be difficult to argue that
an evolved component is still “the same” as the original component. This question will,
therefore, study the component evolution patterns and thresholds.

RQ3: Do architectural changes at the system and component levels occur concur-
rently? This research question aims to reveal the extent to which changes to overall architec-
tural structure are also accompanied by changes to individual system components, and when
and why the two fall out of step.

RQ4: Does significant architectural change occur between minor system versions
within a single major version? As a commonly adopted rule of thumb, developers decide
to introduce a new major version for their system when the new APIs become incompatible
with the previous versions (e.g., as in the case of the Apache Portable Runtime (APR) project
(Apache, 2014a)). In turn, this should imply a substantial change to the system’s architecture.
This research question will target our hypothesis, formed after our initial observations, that
a system’s architecture may experience significant change even though the system remains
within the same major version.

In order to answer these research questions, we extended our previous work (Le et al.,
2015) by applying ARCADE to a total of 720 versions of 18 Apache open-source systems.The
largest versions of these systems range between 50 KSLOC and 800 KSLOC. All of these
systems are implemented in Java and managed in the Apache Jira repository. Table 1 sum-
marizes each system we analyzed, its application domain, number of versions analyzed,
timespan between the earliest and latest analyzed version, and cumulative size of all selected
versions.

In addition to the Apache subject systems, we have analyzed another 5 systems that are
not from the Apache Software Foundation. We use the data from these new systems to further
verify our conclusions, and to address a threat to validity, discussed in Section 8. We refer to

Table 1: Apache subject systems analyzed in our study

System Domain No. of Ver. Time span MSLOC

Accumulo Data Storage System 10 05/15-09/15 1.59
ActiveMQ Message Broker 20 08/04-01/07 3.40
Cassandra Distributed DBMS 127 09/09-09/13 22.0
Chukwa Data Monitor 7 05/09-02/14 2.20
Hadoop Data Process 63 04/06-08/13 30.0
HttpClient HTTP Toolset 88 12/07-09/15 3.31
Ivy Dependency Manager 20 12/07-02/14 0.40
JackRabbit Content Repository 97 08/04-02/14 34.2
Jena Semantic Web 7 06/12-09/13 3.50
JSPWiki Wiki Engine 54 10/07-03/14 1.20
Log4j Logging 41 01/01-06/14 2.40
Lucene Search Engines 21 12/10-01/14 4.90
Mina Network Framework 40 11/06-11/12 2.30
PDFBox PDF Library 17 02/08-03/14 2.70
Poi Java API 20 05/15-09/15 1.68
Struts 2 Web Apps Framework 36 10/06-02/14 6.70
Tika Content Analysis Toolkit 30 05/10-05/15 0.56
Xerces XML Library 22 03/03-11/09 2.30

Total 720 01/01-09/15 125.33
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them as non-Apache systems. In total, we have analyzed 211 versions of the non-Apache
systems, as summarized in Table 2.

Table 2: Non-Apache subject systems analyzed in our study

System Domain No. of Ver. Time span MSLOC

Druid-core Alibaba JDBC Library 27 04/12-08/14 4.61
Guava-core Google Java Library 20 08/12-09/15 1.36
Jackson(JS)-databind Data Binding Library 56 02/12-10/15 4.23
PgJDBC PostgreSQL JDBC driver 64 01/05-10/15 2.27
TestNG Testing Framework 44 07/10-10/15 2.33

Total 211 01/05-10/15 14.8

We applied ARCADE’s workflow depicted in Figure 9 to the different versions of each
system. For each version, ARCADE produced (1) three recovered Architectures, by ACDC,
ARC and PKG, and the values of Change Metrics. All artifacts produced in our study are
available at (ARCADE, 2015).

In our analysis of the subject systems, we leveraged their shared hierarchical versioning
scheme: major.minor.patch-pre-release. A Major version entails extensive changes to
a system’s functionality and typically results in API modifications that are not backward-
compatible. A Minor version involves fewer and smaller changes than a major version and
typically ensures backward-compatibility of APIs. A Patch version, also referred to as a point
version, results from bug fixes or improvements to a system that involve limited change to
the functionality. A Pre-release version, which can be classified as alpha, beta, or release
candidate (RC), usually contains new features and is provided to users before the official
version (major or minor) to get feedback.

This shared versioning scheme enabled us to make certain comparisons despite the
differences among the systems and their numbers of versions. However, different systems
follow different release evolution paths (recall Section 5). Determining the accurate evolution
path for each system turned into an unexpected, non-trivial challenge. For example, in one
system, version 1.2.0 may represent a direct evolution of version 1.1.7; in another system,
1.2.0 may represent a completely new development branch. In order to determine the correct
version sequences in our subject systems, we relied on git-log (Git, 2014) and svn-graph-
branches (Mengué, 2014). We then manually analyzed, and if appropriate updated, the results
of those tools to ensure the accuracy of the suggested evolution paths.

In this process, we identified three frequently-occurring patterns that affected our selection
of version pairs and evolution paths. In a number of cases, a minor version directly evolved
from a previous minor version, rather than from a numerically more proximate patch version.
Similarly, a new major version frequently evolved from a minor version, rather than from
a numerically more proximate patch version; however, changes in patch versions would be
merged at a later time. Lastly, the evolution paths for patch and pre-release versions typically
followed the numeric ordering of their version numbers.

The evolution paths we selected in our study contain the four types of versions (Major,
Minor, Patch, and Pre). In the case of major versions, we decided to consider two separate
evolution paths because that allowed us to uncover different aspects of a system’s evolution:

1. The evolution path involving all changes from the start of one major version to the start
of the subsequent major version (e.g., the version pair (1.0.0,2.0.0)). This evolution
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path represents the totality of changes a system undergoes within a single major version
(hence we refer to it as Major below).

2. The evolution path involving a single version pair that comprises the last minor (or
patch) version within a major version and the next major version (e.g., the version pair
(1.9.0,2.0.0), where there are no other system versions between the two). This evolution
path represents the degree of change to the system at the time the developers decide to
make the “jump” to the next major version. We refer to this evolution path as MinMaj.

As an example of selected version pairs and evolution paths, consider the following set of
versions obtained from the same system: 1.0.0, 1.1.0, 1.1.1, 1.2.0, 1.2.1, 1.2.2, 2.0.0-beta1,
2.0.0-beta2, and 2.0.0. For the Major evolution path, only the pair (1.0.0,2.0.0) is in the path,
as expected. On the other hand, for the MinMaj evolution path, (1.2.0,2.0.0) is in the path
for this system, rather than (1.2.2,2.0.0). The Minor evolution path contains (1.0.0,1.1.0),
as expected, but instead of (1.1.1,1.2.0) it contains (1.1.0,1.2.0). The Patch evolution path
consists of the pairs (1.1.0,1.1.1), (1.2.0,1.2.1) and (1.2.1,1.2.2). Finally, the Pre-release
path includes (2.0.0-beta1,2.0.0-beta2) and (2.0.0-beta2,2.0.0).

In addition to excluding minor and patch versions, as in the above example, in a limited
number of cases we also excluded a major version along with all of its associated minor, patch,
and pre-release versions. That occurred when a major version was actually an entirely different
development branch from the system’s other major versions. For instance, Struts 1 and
Struts 2 (Struts, 2014) have been developed independently and comparing their architectures
would yield no useful information from the perspective of architectural change. In this case,
we selected Struts 2 for our study since it provided a richer set of minor, patch, and pre-release
versions.

The version numbering convention adopted by developers in the non-Apache systems
is similar, although less consistent, when compared to that in the Apache systems. In the
non-Apache systems, the developers tend not to strictly follow the convention, or they tend to
have a preference for a single type of system version. For example, Google almost exclusively
releases major and beta versions, along with a few patch versions, of the Guava library
(Google, 2015b). However, we still apply the above approach of selecting version pairs to
the non-Apache systems. This helps us to understand the differences in the version change
decisions the subject systems.

7 Results

To shed light on the four research questions about architectural change, we leveraged AR-
CADE to compute the a2a and cvg metrics (recall Section 2.1). For each version pair within
each evolution path of a system (recall Section 5), we computed these metrics using the
three architectural views produced by ACDC, ARC, and PKG. For ease of comparison, the
results obtained from the two sets of subject systems—Apache systems and non-Apache
systems—are separated into different tables below. Tables 3 and 4 show the average a2a
values for the two sets of subject systems, while Tables 5 and 6 show the average cvg values
for each system in the two sets. Empty table cells indicate comparisons of versions that
are invalid or cannot be determined. For example, if a software system has only one major
version, architectural change values for Major and MinMaj cannot be computed. We discuss
our findings for each research question below.
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7.1 RQ1: Architectural Change at the System-Level

To study RQ1, we leveraged a2a, which allows us to compute architectural change at the
system-configuration level. Tables 3 and 4 show average a2a values for the five different
types of evolution paths we selected across the three architectural views.

Table 3: Average a2a values between versions of Apache subject systems.

ACDC ARC

System Major MinMaj Minor Patch Pre Major MinMaj Minor Patch Pre

Accumulo - - 84 99 - - - 84 98 -
ActiveMQ 62 69 95 100 99 61 66 93 100 98
Cassandra 42 80 77 99 99 32 75 70 98 99
Chukwa - - 78 - 95 - - 71 - 92
Hadoop 17 73 86 98 - 19 74 83 95 -
HttpClient - - 87 98 98 - - 85 97 97
Ivy 50 67 91 98 99 28 52 86 95 97
JackRabbit 38 76 84 91 98 26 75 84 99 95
Jena - - 88 99 - - - 89 95 -
JSPWiki 18 30 86 98 99 10 25 72 98 99
Log4j 9 13 64 97 85 5 6 68 99 86
Lucene 12 8 96 98 94 11 9 97 100 93
Mina 28 30 92 99 88 15 16 93 99 89
Poi - - 90 99 98 - - 86 100 94
Struts2 - - 90 99 - - - 94 99 -
Tika 60 97 94 - 100 54 96 92 - 100
Xerces 21 54 92 83 - 18 54 91 94 -

AVG 32 55 87 97 96 25 50 85 98 95
DEV 19 30 8 4 5 17 31 9 2 4

PKG

System Major MinMaj Minor Patch Pre

Accumulo - - 85 99 -
ActiveMQ 62 71 94 100 98
Cassandra 36 79 74 99 99
Chukwa - - 79 - 94
Hadoop 14 81 91 100 -
HttpClient - - 90 99 98
Ivy 35 57 89 98 99
JackRabbit 30 82 92 100 99
Jena - - 94 99 -
JSPWiki 8 13 87 99 100
Log4j 1 2 61 98 91
Lucene 1 1 97 99 90
Mina 13 13 98 100 86
PDFBox - - 97 100 -
Poi - - 92 100 99
Struts2 - - 93 99 -
Tika 60 98 95 - 100
Xerces 15 63 91 90 -

AVG 21 49 89 96 96
DEV 22 36 10 2 5

– Value unit is percentage.
– Lower numbers mean more change.
– Empty table cells indicate versions

that do not exist for a given system.
– The second bottom-most row is the

average-of-averages.
– The bottom-most row is the standard

deviation.

In Table 3, we observed a consistent trend for system-level architectural change among
the three views of the Apache systems. The a2a similarity values for the Major and MinMaj
evolution paths are lower than for the remaining three types. This means that most significant
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architectural changes tend to involve major system versions. From the table, we can see a
prevalent overall trend:

a2aPre ≈ a2aPatch > a2aMinor > a2aMinMa j > a2aMa jor

This observation is expected: as discussed earlier, patch versions usually come with bug-fixes,
minor versions usually come with new features, and pre-release versions are wait-for-feedback
versions of a minor or major version that sometime require more changes than patch versions.
Although the averages of the Patch and Pre columns are approximately equal, we observed
significant changes between pre-release versions in some cases. For example, in Log4j, the
a2a(1.3-alpha-6, 1.3-alpha-7) value is 49%, and the a2a(2.0-rc1, 2.0-rc2) value is 72%. The
prevalent overall trend can be observed from a side-by-side depiction of three representative
systems’ evolutions, shown in Figure 11.

Differences between the a2aMinMa j and a2aMa jor values for a given software system
reflect different aspects of change that has occurred both within and across that system’s
major versions. For example, in the case of Hadoop, a2aMinMa j is 73% while a2aMa jor is
17% for ACDC. Hadoop had more than twenty minor versions between versions 0.1.0 and
0.20.x, before releasing version 1.0.0 (Apache, 2014b). We consider 0.1.0 to be Hadoop’s
first major release since it is, in fact, Hadoop’s very first release. As a result, the architectural
gap between version 0.1.0 and 1.0.0 is expected to be very large, yielding a low a2aMa jor

value. On the other hand, changes between the last minor version and the subsequent major
version that is derived from it (i.e., for the version pair (0.20.0,1.0.0)) are comparatively
small, resulting in a relatively high a2aMinMa j value.

Incremental changes between consecutive minor versions need not always result in higher
architectural similarity between the last minor version and the subsequent major version,
and may be dwarfed by the changes a major version introduces. This is illustrated by the
case of Lucene, whose pair (a2aMajor,a2aMinMaj) is (12%, 8%) for ACDC, while its a2aMin

is 96% for its six minor releases from versions 3.0.0 through 3.6.0. In fact, the new major
version 4.0.0 has no significant similarity to the previous major version (3.0.0) or its most
proximate minor version (3.6.0). Looking into the code history of Lucene, we found that
multiple changes between minor versions are related to backward-compatibility issues. For
example, Lucene 3.6.0 contains packages that are added to support backward-compatibility

Fig. 11: Average a2a values in three subject systems
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Table 4: Average a2a values between versions of non-Apache software systems.

ACDC ARC

System Major MinMaj Minor Patch Pre Major MinMaj Minor Patch Pre

Druid 82 - - 99 - 79 - - 96 -
Guava 94 - - 100 100 93 - - 100 100
JS-databind - - 95 99 100 - - 92 99 99
PgJDBC 69 89 95 99 - 64 86 91 99 -
TestNG - - 91 99 - - - 87 99 -

AVG 76 89 94 99 100 76 86 91 99 100
DEV 10 - 2 0 0 11 - 2 1 0

PKG

System Major MinMaj Minor Patch Pre

Druid 86 - - 99 -
Guava 93 - - 100 100
JS-databind - - 96 99 100
PgJDBC 71 90 96 99 -
TestNG - - 91 99 -

AVG 83 90 94 99 100
DEV 9 - 2 0 0

– Value unit is percentage.
– Lower numbers mean more change.
– Empty table cells indicate versions

that do not exist for a given system.
– The second bottom-most row is the

average-of-averages.
– The bottom-most row is the standard

deviation.

with versions 3.1.x and 3.3.x. At the time version 4.0.0 was released, a substantial number of
changes happened in the backward-compatibility policy. Subsequently, those packages were
removed from version 4.0.0.

Obtaining the consistent trends across the recovered architectural views that are shown in
Table 3 at times required that we manually adjust the inputs into two of the three architecture
recovery techniques. Namely, in several instances we observed that ARC (the semantics-based
view) provided a significantly better insight into architectural change than ACDC and PKG
(the structure-based views). Inspection of our subject systems’ source code uncovered that,
in some systems (e.g., Log4j, Lucene), developers decided to change the root package name
when releasing a new major version. Since ACDC and PKG rely directly on the package
structure of the system, such an architecturally inconsequential change caused them to return
exceptionally low a2a values. On the other hand, ARC performs clustering of code entities
(for the Java code evaluated here, these are classes and enums) based on topic models of
systems, and changing package names had no effect on its accuracy.

Although PKG performed significantly better at the system level than at the component
level (see Section 7.2), our analysis of the a2a metric’s results provided the first indication
that PKG may not always accurately reflect architectural change. Namely, the a2a values
for the architectures suggested by PKG are uniformly higher than corresponding values in
the ACDC and ARC views. This suggests a simple scenario under which PKG falters: if
developers put all of the, arbitrarily many, new features of a system’s new minor or major
version into a small subset of the system’s packages, PKG will still indicate only small, if
any, architectural changes.

For all three architectural views, the standard deviation values (the bottom-most “DEV”
row) show a consistent trend. The DEV value of a2aMinMa j is larger than the one of a2aMa jor.
This reflects that developers tend to increase a major version number depending on the
accumulated architectural change during the entire major version, rather than on the degree
of architectural change since the last minor version. This is reflective of practices expected
of well-organized development teams, which usually define a long-term road map of future
features and associate those with system versions.
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The a2a values of non-Apache systems in Table 4 follow the observed trend in the
Apache systems. For example, the a2aMa jor values are the lowest among the five evolution
paths, indicating that the most significant architectural change occurs between two major
versions of a non-Apache system. Compared to the Apache systems, the non-Apache systems
have higher a2a values with smaller gaps between different evolution paths. For example,
in the ACDC view, the average values of a2aMa jor, a2aMinor and a2aPatch are, respectively,
32%, 87%, and 97% for the Apache systems, and 76%, 94%, and 99% for the non-Apache
systems. This can be explained by the different versioning style used in non-Apache systems.
For example, as explained in Section 6, developers of Guava almost exclusively use major
numbers.

7.2 RQ2: Architectural Change at the Component-Level

To understand architectural change at the level of individual components, we relied on
ARCADE’s cvg metric. In the results reported here, we set the threshold thcvg (recall Section
2.1) to 67%. We experimented with several thcvg values, and 67% gave us the most intuitive
result. This setting allows ARCADE to treat two clusters as different versions of the same
cluster, while allowing a reasonable fraction of the new cluster’s constituent code elements to
change. Table 5 and 6 depict average cvg values for architectures recovered by ACDC, ARC,
and PKG. As in the case of a2a, these values are computed for Major, MinMaj, Minor, Patch,
and Pre-release version pairs. Average cvg values are computed for each version pair (s, t),
which obtains the percentage of extant components, and its inverse (t,s), which allows us to
determine the extent to which new components were added to a version.

We first discuss the result of Apache subject systems in Table 5. The cvg values for a
version pair and its corresponding inverse pair shared the same general trend, across all three
recovery techniques, that we observed with a2a values:

cvgPre ≈ cvgPatch > cvgMinor > cvgMinMa j>cvgMa jor

However, individual version pairs and their inverses were notably dissimilar in some cases.
For example, across the four major versions of ActiveMQ, ACDC yielded cvgMinMa j(s, t) =
61% and cvgMinMa j(t,s) = 48%. This means that a newly introduced major version retained
61% of the immediately preceding minor version’s components. In turn, this comprised
only 48% of the new major version’s components due to the system’s increase in size; the
remaining 52% were newly introduced components. In other words, ActiveMQ grew by
an average of 27% (cvgMinMa j(s, t)/cvgMinMa j(t,s)) in the number of components during the
introduction of a new major version. Overall, the differences between the average cvg values
for version pairs and their inverses across all subject systems (the AVG row in Table 5) ranged
between 0% (Patch versions in ACDC) and 9% (MinMaj versions in ARC).

All three recovery techniques show extensive component-level change at the Major and
MinMaj levels. Conversely, all three show significant stability at the Minor, Patch, and Pre-
release levels. However, the results yielded by analyzing ARC’s recovered architectures are
notably different from, both, ACDC and PKG. First, both PKG and especially ACDC tended
to under-report the degree of component-level similarity of architectures between major
version pairs. In several cases, the two techniques yielded no similarity (the 0% values in
Table 5) even though a manual inspection of the corresponding versions suggested that some
component-level similarity was, in fact, preserved. While ARC also yielded very low values
for the same cases, in most of those cases it did, accurately, maintain some component-level
similarity. The reason for this is that both ACDC and PKG rely on the system’s structural
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Table 5: Average cvg values between versions of Apache subject systems.

ACDC ARC

Major MinMaj Minor Patch Pre Major MinMaj Minor Patch Pre
System (s, t) (t,s) (s, t) (t,s) (s, t) (t,s) (s, t) (t,s) (s, t) (t,s) (s, t) (t,s) (s, t) (t,s) (s, t) (t,s) (s, t) (t,s) (s, t) (t,s)

Accumulo - - - - 71 64 99 99 - - - - - - 77 66 99 98 - -
ActiveMQ 28 19 61 48 95 92 100 100 99 99 37 27 57 54 91 85 99 99 94 92
Cassandra 5 4 59 53 52 46 98 99 98 98 39 19 71 61 65 55 97 96 95 95
Chukwa - - - - 63 54 - - 86 86 - - - - 54 44 - - 72 72
Hadoop 0 0 54 46 83 74 95 98 - - 20 3 71 55 82 73 96 96 - -
HttpClient - - - - 65 64 97 97 96 95 - - - - 74 70 93 94 93 92
Ivy 6 4 46 45 67 57 100 96 100 96 7 5 46 42 47 41 82 75 93 95
JackRabbit 16 7 53 57 87 81 98 97 96 96 49 15 66 65 85 78 99 99 92 92
Jena - - - - 81 74 96 96 - - - - - - 81 77 92 92 - -
JSPWiki 0 0 0 0 38 35 85 84 98 98 0 0 39 9 41 33 90 87 98 98
Log4j 0 0 0 0 29 21 94 93 85 82 7 2 5 2 57 42 87 85 81 79
Lucene 0 0 0 0 87 84 98 98 99 99 0 0 0 0 92 91 99 99 85 91
Mina 4 2 4 2 78 78 99 99 87 80 10 6 12 8 85 85 99 99 82 77
PDFBox - - - - 94 92 95 94 - - - - - - 88 85 99 97 - -
Poi - - - - 86 83 100 100 94 95 - - - - 84 78 100 100 88 89
Struts2 - - - - 79 83 96 96 - - - - - - 74 78 96 95 - -
Tika 25 17 100 100 80 77 - - 100 100 52 26 83 85 82 78 - - 100 100
Xerces 0 0 20 16 83 81 86 83 - - 12 5 26 29 85 79 86 82 - -

AVG 7 5 36 33 73 69 96 95 95 94 21 10 43 37 72 74 96 94 89 89
DEV 10 7 33 32 19 20 5 5 6 7 19 10 29 29 16 18 6 7 8 8

PKG

Major MinMaj Minor Patch Pre
System (s, t) (t,s) (s, t) (t,s) (s, t) (t,s) (s, t) (t,s) (s, t) (t,s)

Accumulo - - - - 82 72 100 99 - -
ActiveMQ 33 27 60 67 96 93 100 100 100 97
Cassandra 29 18 77 69 69 60 98 100 99 99
Chukwa - - - - 76 67 - - 93 93
Hadoop 0 0 54 46 95 85 100 99 - -
HttpClient - - - - 83 81 99 99 98 98
Ivy 14 11 48 46 81 65 100 97 100 97
JackRabbit 28 12 65 73 93 86 99 98 98 98
Jena - - - - 97 93 99 99 - -
JSPWiki 0 0 25 5 63 51 97 96 100 100
Log4j 0 0 0 0 69 54 99 97 92 88
Lucene 0 0 0 0 88 85 99 99 70 89
Mina 8 4 8 4 96 96 97 96 91 83
PDFBox - - - - 97 97 98 97 - -
Poi - - - - 94 90 100 100 97 98
Struts2 - - - - 91 95 98 98 - -
Tika 30 20 100 100 93 90 - - 100 100
Xerces 7 3 20 10 85 83 90 88 - -

AVG 13 9 42 38 86 80 98 97 95 95
DEV 13 10 33 35 10 15 2 3 8 5

– Value unit is percentage.
– Lower numbers mean more

change.
– Empty table cells indicate versions

that do not exist for a given system.
– The second bottom-most row is the

average-of-averages.
– The bottom-most row is the stan-

dard deviation

dependencies and are significantly affected by changes that span most or all of the system’s
implementation packages. On the other hand, ARC’s reliance on the information contained
in the system’s implementation elements, rather than on the relative organization of those
elements, made it less susceptible to misinterpreting the large system changes that typically
happen at the Major and MinMaj levels.

An analogous argument explains why ARC yields lower component similarity values for
the Minor, Patch, and Pre-release levels: ACDC and especially PKG fail to recognize large
architectural changes to system components if those changes are confined within a package
or a small number of packages.
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Table 6: Average cvg values between versions for non-Apache subject systems.

ACDC ARC

Major MinMaj Minor Patch Pre Major MinMaj Minor Patch Pre
System (s, t) (t,s) (s, t) (t,s) (s, t) (t,s) (s, t) (t,s) (s, t) (t,s) (s, t) (t,s) (s, t) (t,s) (s, t) (t,s) (s, t) (t,s) (s, t) (t,s)

Druid 57 50 - - - - 97 96 - - 77 67 - - 94 93 - -
Guava 89 85 - - - - 100 100 100 100 89 85 - - - - 100 100 100 100
JS-databind - - - - 89 88 100 100 99 99 - - - - 83 81 100 99 98 98
PgJDBC 31 21 76 68 87 83 98 98 - - 50 34 79 74 83 78 98 97 - -
TestNG - - - - 83 81 99 100 - - - - - - 80 77 99 99 - -

AVG 59 52 76 68 86 84 99 98 99 99 72 62 79 74 82 79 98 98 99 99
DEV 24 26 - - 2 3 1 2 1 1 16 21 - - 11 2 2 3 1 1

PKG

Major MinMaj Minor Patch Pre
System (s, t) (t,s) (s, t) (t,s) (s, t) (t,s) (s, t) (t,s) (s, t) (t,s)

Druid 82 72 - - - - 99 98 - -
Guava 94 88 - - - - 100 100 100 100
JS-databind - - - - 97 96 100 100 97 97
PgJDBC 87 59 95 86 99 92 99 100 - -
TestNG - - - - 89 87 99 100 - -

AVG 88 73 95 86 95 92 99 100 99 99
DEV 5 12 - - 4 4 0 1 2 2

– Value unit is percentage.
– Lower numbers mean more

change.
– Empty table cells indicate ver-

sions that do not exist for a given
system.

– The second bottom-most row is
the average-of-averages.

– The bottom-most row is the stan-
dard deviation

The prevalent trend of cvg values remains intact across all five evolution paths of the
non-Apache systems, as shown in Table 6. We note that the cvg values in Table 6 are
markedly higher than the corresponding values in the Apache subject systems in Table 5. For
example, in the ACDC view, the average values (“AVG”) of cvgMa jor(s, t) and cvgMa jor(t,s)
are, respectively, 7% and 5% for the Apache systems, and 59% and 52% for the non-Apache
systems. Therefore, not only are the non-Apache systems more stable at the system-level, but
also at the component-level.

We can conclude that a2a and cvg mostly display consistent trends for both the Apache
and non-Apache systems. In Section 7.3, we will discuss instances in which a2a and cvg show
different aspects of architectural change that buck this trend. However, this is apparent in
some of the larger Apache systems, but was not observed in the non-Apache systems. Another
noticeable difference between the Apache and non-Apache systems is that the architectural
changes in non-Apache systems are much smaller when moving to a new major version
(MinMaj). This again reiterates the importance of stability and backward compatibility in
non-Apache systems.

7.3 RQ3: System-Level vs. Component-Level Change

While the discussion of RQ1 and RQ2 indicated that architectural change followed the
same general trends in our subject systems at the overall-structure and individual-component
levels, the extent of that change differed. We can see significant differences between the
a2a (architecture-level) and cvg (component-level) change metrics. For example, all three
architecture recovery techniques yielded 0% cvg values for JSPWiki’s Major versions; none
of them did so in the case of a2a. The reason for that is that a2a and cvg measure two different
aspects of architectural evolution. a2a measures the similarity between two architectures
in terms of the number of operations required to transform one architecture to the other,
while cvg measures the similarity between two architectures in terms of the number of



34 Pooyan Behnamghader * et al.

components that persist in the course of evolution. In JSPWiki, cvg yielded 0% because
no two components in the major versions were “sufficiently” similar based on the chosen
threshold. On the other hand, a2a found some shared entities among the major versions,
resulting in a non-zero degree of similarity.

Another rełvealing example is Lucene. Lucene may be thought of as a catalog of multiple
information retrieval systems that have historically been added to and removed from it. For
example, the Solr project was initially developed by CNET Networks, and later released as
an open-source project and merged with the Lucene code base (Apache, 2014c). Due to this
nature of Lucene, it has tended to undergo a lot of significant changes before the release
of a new major version. Although some parts of the system structure would be maintained
(indicated by a2aMa jor and a2aMinMaj), Lucene’s components changed significantly (both
cvgMa jor and cvgMinMa j are 0% across all three recovery techniques).

In Apache systems, we note that the growth of divergence between the a2a and cvg values
from Patch and Pre-release versions at one end of the spectrum to Major versions at the
other end is more pronounced in the case of ACDC and PKG than in the case of ARC. This is
another indicator that the two structure-based recovery techniques are indeed much better
equipped to track system-level than component-level architectural changes. Additionally,
the consistently higher a2a values that both ACDC and PKG yield as compared to ARC
suggest that the semantics-based perspective of ARC yields more architectural changes at the
system-level as compared to the structure-based perspectives of ACDC and PKG.

To illustrate the difference in architectural similarity yielded by the structural views—
ACDC and PKG—as compared to ARC, Figures 12–14 depict architectural changes among
minor versions of Ivy: Figure 12 depicts the a2a values; Figure 13 depicts the cvg values for
each version pair (s, t); and Figure 14 shows its inverse, i.e., the cvg values for version pairs
(t,s). Note that, for clarity, we do not depict the MinMaj evolution paths in Figures 12–14.

Figure 12 shows that the trends for a2a values involving Ivy’s minor versions are similar
among the three architectural views, with the ARC values generally slightly lower than the
ACDC and PKG values. However, Figures 13 and 14 show that ARC reveals significant
component-level changes for the same set of minor versions of Ivy.

To verify these and other similar results, we examined the changes that occurred in the
involved versions. We found two key reasons for the lower ARC values, particularly at the
component level: (1) class additions and (2) renaming of classes and variables. Classes were
added, e.g., in Ivy’s versions 0.6.0 and 0.8.0, indicating that the semantics of the affected
components changed. However, these classes were mostly added to existing packages or

Fig. 12: a2a values between minor versions of Ivy
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Fig. 13: cvg(s, t) values between minor versions of Ivy

Fig. 14: cvg(t,s) values between minor versions of Ivy

components, resulting in a much smaller change to the architecture’s structure. This type
of semantic change at the component level is precisely the kind of change that the cvg
values for ARC are intended to highlight. Furthermore, many classes and variables underwent
refactoring across system versions (e.g., from URLDownloader to URLHandler in Ivy).
These are semantic rather than structural changes, and are more readily taken into account by
ARC than in either of the structural views.

On the other hand, in the non-Apache systems used in this study, we did not find any
instances in which the values of the a2a and cvg metrics led to contradicting conclusions. We
attribute this to the desired high stability of non-Apache systems, which is also reflected in
their architectures.

7.4 RQ4: Architectural Change in Consecutive Minor Versions

Our finding that major architectural change tends to involve major system versions was not
surprising (although several of its facets, discussed above, were unexpected). In particular,
we have found that a “jump” to a new major version (MinMaj) results in significant change,
sometimes comparable to the cumulative sequence of changes experienced by a system across
an entire major version. This can be seen in the MinMaj results in Tables 3 and 5. These
results also indicate that, on the average, a transition to a new major version involves more
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pronounced architectural changes than transitions between minor versions within the same
major version.

Table 7: Minimum a2a values between minor versions

(a) Apache subject systems

System ACDC ARC PKG

Accumulo 83 83 84
ActiveMQ 86 78 84
Cassandra 60 55 49
Chukwa 72 73 76
Hadoop 57 51 72
HttpClient 71 70 74
Ivy 85 65 79
JackRabbit 76 69 74
Jena 83 77 86
JSPWiki 47 55 58
Log4j 62 62 59
Lucene 96 89 90
Mina 93 92 98
PDFBox 87 87 87
Poi 72 67 70
Struts2 79 80 83
Tika 85 80 86
Xerces 41 37 48

AVG 74 70 73
DEV 15 15 14

(b) Non-Apache subject systems

System ACDC ARC PKG

Druid - - -
Guava - - -
Jackson-databind 94 89 95
PgJDBC 91 80 91
TestNG 77 71 78

AVG 87 80 88
DEV 7 7 7

An interesting question we set out to explore in this study was whether this is always the
case. In other words, can a system’s architecture experience changes between two consecutive
minor versions that are comparable to the changes between a minor version and the subsequent
major version? To this end, we conducted an analysis to determine the minimum similarity
among all consecutive minor version pairs within a major version. Table 7a and 7b show
the a2a results of that analysis on architectures produced by ACDC, ARC and PKG. In our
dataset, Druid and Guava do not have minor versions. Therefore, the cells of those systems in
Table 7b are empty.

We first discuss the Apache systems, shown in Table 7a. Several values in the table
indicate that considerable architectural change can indeed occur between two minor versions
(e.g., 47% for ACDC in JSPWiki; 37% for ARC in Xerces). In some systems (e.g., Cassandra),
the minimum a2a values between consecutive minor versions (60% for ACDC; 55% for ARC;
49% for PKG) are lower than the corresponding MinMaj values (80% for ACDC; 75% for
ARC; 79% for PKG, as shown in Table 3). The analogous analysis involving minimum cvg
values shows similar results, but is elided due to space constraints. The main reason for this
is that developers tended to add a large number of new features to a new minor version of a
system, especially at the beginning of the system’s life cycle. For example, Xerces more than
doubled in size from version 1.0 to version 1.2, which is its next downloadable minor version.
In addition to the substantial system changes that are likely at early stages of development,
this may also have occurred due to the lack of clear and consistent versioning guidelines.
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This was one of several findings that indicated that software engineers may be missing a
crisply defined, shared intuition as to how and to what extent a software architecture changes
as a system evolves. Such findings reveal that software developers do not always base their
versioning schemes on the architectural impact of their changes, be it because they are not
aware of said impact or because they do not consider it relevant enough to be reflected in the
versioning scheme.

The minimum a2a values for the non-Apache subject systems are shown in Table 7b.
Although the architectures of these systems are highly stable, in some instances big architec-
tural changes are noticeable (e.g., 71% for PKG in TestNG). However, the minimum a2aMinor

values are relatively high compared to the Apache systems. In addition, the standard deviation
values of non-Apache systems (7% in Table 7b) are smaller than standard deviation values
of Apache systems (14%-15% in Table 7a). This reinforces the inference that developers of
those three systems, all of which are libraries, care about stability and backward compatibility,
and are likely to maintain the system’s architecture stable across a single major version.

8 Threats to Validity

We identify several potential threats to the validity of our results with their corresponding
mitigating factors.

The key threats to external validity involve our subject systems. Although we used a
limited number of systems, we selected them so that they vary along multiple dimensions,
including application domain, number of versions, size, and time frame. The different numbers
of versions analyzed per system pose another potential threat to validity. This is unavoidable,
however, since some systems simply undergo more evolution than others. In order to mitigate
this threat, we compared versions against each other based on type (major, minor, patch and
pre-release).

The construct validity of our study is mainly threatened by the accuracy of the recovered
architectural views and of our detection of architectural change. To mitigate the first threat,
we selected the two architecture recovery techniques, ACDC and ARC, that have demonstrated
the greatest accuracy in our extensive comparative analysis of available techniques (Garcia
et al., 2013a). Furthermore, we complemented these techniques with PKG, which implements
an objective measure of a system’s “implementation architecture” (Kruchten, 1995). These
three techniques are developed independently of one another and use very different strategies
for recovering an architecture. This characteristic of our work, coupled with the fact that
their results exhibit similar trends, helps to strengthen the confidence in our conclusions. To
properly characterize architectural change between two versions, we created a new system-
level change metric (i.e., a2a) and a new component-level change metric (i.e., cvg) based on
a previously validated metric (Garcia et al., 2013a). We have evaluated a2a by applying it on
a large number of scenarios; manually inspecting its results; and comparing it to the widely
used MoJoFM metric, especially in those cases when MoJoFM yielded counterintuitive
results.

9 Related Work

Software evolution has been studied extensively at the code level, dating back several decades
(e.g., Lehman’s laws (Lehman, 1980)). We will highlight a number of examples that have
influenced our work. Godfrey and Tu (Godfrey and Tu, 2000) discovered that Linux’s already
large size did not prevent it from continuing to grow quickly. Eick et al. (Eick et al., 2001)
found a reduction in modularity over the 15-year evolution of software for a telephone
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switching system. Murgia et al. (Murgia et al., 2009) studied the evolution of Eclipse and
Netbeans and found that 8%-20% of code-level entities contain about 80% of all bugs.
While interesting, informative, and influential in our work, these studies do not examine
the evolution of a software system’s architecture. In our recent work Le et al. (2016), and
(Langhammer et al., 2016), we have shown the benefit of studying architectural evolution
by proposing a framework to correlate a software system’s qualities with the evolution of its
architecture.

Several studies (D’Ambros et al., 2008), (Nakamura and Basili, 2005), (Holt and Pak,
1996), (Wettel and Lanza, 2008), (Tu and Godfrey, 2002) have attempted to investigate
architectural evolution. These studies are smaller in scope than our work in this paper.
Additionally, unlike ARCADE’s use of structural and semantic architectural views, only one
of these studies considers more than one architectural perspective—however, in that study,
as well as several others, the chosen perspectives are arguably not architectural at all. Each
study also differs from our work in other important ways.

D’Ambros et al. (D’Ambros et al., 2008) present an approach for studying software
evolution that focuses on the storage and visualization of evolution information at the code
and architectural levels. Their study utilizes a different set of architectural metrics than ours,
specifically targeted at their visualizations. We quantitatively study architectural evolution
by introducing metrics that compare a pair of architectural artifacts recovered from the
implementation of two different versions of a software system and produce a single similarity
value for each pair.

Nakamura et al. (Nakamura and Basili, 2005) present an architectural change metric
based on structural distance, and apply it to 13 versions of four software systems. However,
they define their metric on class dependency graphs, therefore measuring change at the level
of a system’s OO implementation rather than its architecture. While the metric allows nodes
to be assigned to entities as small as individual statements, they advise the use of larger units,
such as files, classes, interfaces or methods.

Holt and Pak (Holt and Pak, 1996) present an approach for visualizing architectural
evolution, and apply it to 11 versions of an industrial system. Their study represents archi-
tectural changes by visualizing the difference between architectural facts (subsystems and
relations) of different versions of a software systems. Unlike our work, they study architec-
tural evolution from a prescriptive approach (as-conceived) instead of descriptive approach
(as-implemented).

Wettel et al. (Wettel and Lanza, 2008) utilize visualization techniques to render coarse-
grained (at the level packages and classes) and fine-grained (at the level of methods methods)
structural evolution in object-oriented software systems. Unlike our work, they study software
evolution as reflected in the structure of implementation level entities (packages, classes, and
methods) rather than a system’s architecture.

Tu and Godfrey (Tu and Godfrey, 2002) present an integrated approach, Beagle, to
analyze the evolution of a software system’s architecture. They introduce two techniques
to implement “Origin Analysis” for detecting the structural changes between two releases
of a system: (1) Bertillonage analysis detects the similarity of code fragments based on
the euclidean distance of metrics representing and classifying those fragments, and (2)
dependency analysis is based on identifying changes in function call patterns. This study can
be viewed as complementary to ours, as the metrics used Tu and Godfrey are code-based
evolution metrics including basic (e.g., lines of code, lines of comments, and cyclomatic
complexity) as well as composite metrics such as S-complexity and D-complexity. Those
metrics are not designed to measure the distance between a pair of architectural facts (i.e.,
the recovered architectures in our study).
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A group of studies by Bouwers et al. (Bouwers et al., 2011a, 2013, 2011b) has treated
implementation packages as architectural components in assessing the usefulness of metrics
for balancing the number of components in a system and for measuring coupling between
components. We considered both of these metrics for inclusion in ARCADE. We decided
against including the balancing metric because our previous studies (Garcia et al., 2013a,b)
have indicated that ACDC and ARC obtain appropriate numbers of components in practice.
We are currently studying the coupling metric and assessing its effectiveness in measuring
recovered architectures.

Inspired by these studies, we have implemented and included PKG in our study as well.
However, our recent work has shown that software architects consider the package structure
to be useful but, by itself, an inaccurate architectural proxy (Garcia et al., 2013b). We thus
consider the results of Bowers et al.’s studies to be more indicative of implementation change
than of architectural change. This is consistent with the widely referenced 4+1 architectural-
view model (Kruchten, 1995), in which packages belong to a system’s implementation
view.

10 Conclusion and Future Work

This paper has presented the largest study of architectural recovery and architectural evolution
to date. The study’s scope is reflected in the number of subject systems (23), the total number
of examined system versions (931), the total amount of analyzed code (140 MSLOC), the
number of applied architecture-recovery techniques (3) resulting in distinct architectural
views produced for each system, the number of analyzed architectural models (2793, yielded
by the three recovered views per system version), and the number of architectural change
metrics (3) applied to each of the 2793 architectural models. This scope was enabled by
ARCADE, a novel automated workbench for software architecture recovery and analysis.
This paper has significantly extended our previous work (Le et al., 2015). Through ARCADE-
Controller, our approach has the ability to employ cloud-computing power to run large-scale
analyses in a reasonable amount of time.

As part of the extensions to our previous work, this paper introduces a comprehensive
discussion of two architectural metrics, a2a and cvg, that enable the study of architectural
change at the overall system-level and component-level. This foundation includes (1) the
algorithm that computes a2a and (2) the mathematical properties of both a2a and cvg that
are relevant for studying architectural change. a2a overcomes a critical shortcoming of the
widely used MoJoFM metric (Wen and Tzerpos, 2004) that makes it ill-suited for a study of
this kind.

Our study corroborated a number of widely held views about the times, frequency, scope,
and nature of architectural change. However, the study also resulted in several unexpected
findings. The foremost is that a system’s versioning scheme is not an accurate indicator
of architectural change: major architectural changes may happen between minor system
versions. Even more revealing was the observation that a system’s architecture may be
relatively unstable in the run-up to a release. We believe that enabling engineers to spot such
instability would go a long way toward stemming the types of developer habits that result
in unstable, buggy system releases. Finally, our results further corroborated the observation
made in recent interactions with practicing software architects (Garcia et al., 2013b) that
the gross-level organization of a system’s implementation (i.e., PKG) is, by itself, not an
adequate representation of the system’s architecture (as represented by a2a). This is especially
magnified in cases where the overall implementation architecture (i.e., cvg for PKG) remained
very stable while, in fact, the system experienced significant growth (a2a for PKG). For this
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reason, analyzing a system’s recovered conceptual architecture, both at the level of overall
structure and at the level of individual components, is a much more appropriate way of
assessing and understanding architectural change.

Another broad conclusion of our study points to the significance of the semantics-
based architectural perspective. We encountered multiple instances where a concern-based
architectural view revealed important changes that remained concealed in the corresponding
structure-based views. At the same time, a significant segment of the research of software
architecture, and in particular the research of architecture recovery, has focused on system
structure. Along with the results of our recent evaluation of recovery techniques (Garcia
et al., 2013a), this suggests that there is both a need and an opportunity for investigating more
effective approaches to architecture recovery.

ARCADE provides a powerful foundation for studying a wide variety of architectural
phenomena as software systems evolve. Besides including additional subject systems, we
are working to extend ARCADE to support other architectural constructs (e.g., component
types, software connectors (Taylor et al., 2009), their interfaces, and their concerns). We
are currently complementing the study described in this paper with an analysis of the
decay (Perry and Wolf, 1992) found in architectures as they change over time. To this end,
we have recently added six new metrics and a dozen architectural smell types to ARCADE for
measuring different aspects of architectural decay. We intend to use the analysis of decay as a
springboard for improving our understanding of the relationship between architectural change
and decay on the one hand, and the reported implementation issues on the other hand. In an
ongoing research thread, we aim to leverage ARCADE to understand and predict a system’s
non-functional properties by converting its recovered architecture into analyzable models
used in DomainPro (Shahbazian et al., 2016). Furthermore, we intend to enrich ARCADE’s
tool set by adding various existing code-level analyses to it. This integration will provide
ARCADE users with additional, large-scale program analyses that are deployable onto the
cloud. Our long-term goal is to leverage ARCADE to enable prediction of architectural decay
and major architectural change based on available implementation-level information.
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